# #7 - How to Handle Missing Values in Data?

## In this article, we will learn some strategies to handle missing values in the dataset given.

### What is a missing value?

Missing value simply refers to a situation where there is no data stored for the variable in an observation. This usually happens when there is no response detected for a particular question during the process of data collection. Data Analysts have to be very careful in dealing with missing values. The process to handle the missing data is called **imputation**. On the whole, imputation is helpful to some extent but not fully in replacing the actual value that can be assumed in the place of missing value.

**Credits of Cover Image** - Photo by Alex Jones on Unsplash

### Techniques of Imputation

- Filling by a
**Central Tendency**- Mean replacement
- Median replacement
- Mode replacement

**Categorical Imputation**- For each category, compute central tendency and fill the missing value for that category itself.

**Model Imputation**- Building a machine learning model to fill up the missing data by the predicted values.

**Note** - In this article, we will focus only on `1`

and `2`

techniques. We will not focus on `3`

just for now.

For implementing the above methods we will need to first create a **toy dataset** in order to programmatically understand each technique.

### Necessary `import`

s

```
import warnings
warnings.filterwarnings('ignore')
import pandas as pd
import numpy as np
import random
from sklearn.datasets import make_blobs
from scipy import stats
from matplotlib import pyplot as plt
```

### Dataset Creation

In our data, we shall make sure that we have at least one feature which is categorical. The method `make_blobs()`

can be really handy in creating toy datasets in our own experiments.

With this method, we will create a dataset that will have -

- 100 samples
- 2 features
- 3 centers

```
X, y = make_blobs(n_samples=100, n_features=2, centers=3)
df = pd.DataFrame(dict(x=X[:,0], y=X[:,1], label=y))
print(df.head())
```

The gist of the data looks like this -

Index | x | y | label |

0 | -1.960223 | -2.240400 | 2 |

1 | -3.489893 | -3.149356 | 2 |

2 | -8.173217 | 6.186763 | 1 |

3 | -1.216968 | -3.318524 | 2 |

4 | -7.661975 | 9.092514 | 1 |

Similarly, the **original plot** of the data looks like this -

### Missing values at random locations

In Python, a missing value is represented as `NaN`

which means **Not a Number**. We will create missing values in the `y`

column for the above toy dataset.

```
df['y'].loc[df['y'].sample(frac=0.1).index] = np.nan
```

The above code simply means that we are creating `10%`

of missing values completely at random locations of the existing data frame.

```
df.isnull().sum()
# ------
'''
x 0
y 10
label 0
dtype: int64
'''
```

### Computing Central Tendency

Since, we have to impute the missing values with central tendencies like `mean`

, `median`

, and `mode`

. We will create a **helper function** that takes three params -

`data`

→ The dataset for which the central tendencies should be computed.`col`

→ The column for which the central tendencies should be computed.`strategy`

→ Mean, Median, and Mode strategies.

```
def fill_values(data, col, strategy):
if (strategy == 'mean'):
fval = data[col].mean()
elif (strategy == 'median'):
fval = data[col].mean()
else:
fval = stats.mode(data[col])[0][0]
return fval
```

The above function returns a value based on the `strategy`

that is used.

### 1) Filling by a Central Tendency

In order to fill the `NaN`

values with new values in the existing column of the data, we need to have a function that does so. The function takes three params -

`data`

→ The dataset for which the central tendencies should be computed.`col`

→ The column for which the central tendencies should be computed.`strategy`

→ Mean, Median, and Mode strategies.

```
def simple_imputer(data, col, strategy):
fval = fill_values(data=data, col=col, strategy=strategy)
non_nans = data[col].fillna(fval).to_list()
return non_nans
```

The above function returns a list with filled values based on the `strategy`

that is used.

**Note** - The above technique is very simple and would not produce good results when compared with other techniques.

If we try to visualize the data after filling the `NaN`

's, we would see some sort of dispersion in the data.

We can see a horizontal pattern formed by points. These points are actually `NaN`

values that got filled by a respective central tendency. And moreover, neither of them belong to any of the clusters.

### 2) Categorical Imputation

In our original dataset, besides `x`

and `y`

columns we also have one column called `label`

that `3`

unique values such as **[0, 1, 2]**. A simple hack that we can incorporate here is, we can separate the data by clusters and then compute the central tendency to fill up the `NaN`

values. By doing so, we can make sure that the new values belong to their respective clusters.

As usual, we will have a function to separate data cluster-wise. The function takes four params -

`data`

→ The dataset for which the central tendencies should be computed.`col`

→ The column for which the central tendencies should be computed.`label`

→ The column with which the data is separated into clusters.`strategy`

→ Mean, Median, and Mode strategies.

```
def label_imputer(self, data, col, label, strategy):
col_label_df = data[[col, label]]
counts_df = col_label_df[label].value_counts().to_frame()
classes = counts_df.index.to_list()
fval_class = []
for each_class in classes:
# separating data into clusters
mini_frame = col_label_df[col_label_df[label] == each_class]
# computing central tendency
non_nans_frame = pd.Series(data=simple_imputer(mini_frame, col, strategy), index=mini_frame.index)
fval_class.append(non_nans_frame)
final_vals = pd.concat(fval_class).sort_index().to_list()
return final_vals
```

The above function is used to compute the central tendency value based upon the cluster that it belongs to and finally returns a list of values.

If we try to visualize the data after filling the `NaN`

's, we would not see any sort of dispersion in the data but rather a uniformity and resemblance with the original plot (without `NaN`

values).

### Full Code

```
class Imputer():
def __init__(self, strategy):
self.available_strats = ['mean', 'median', 'mode']
self.strategy = 'median' if strategy not in self.available_strats else strategy
def fill_values(self, data, col):
if (self.strategy == 'mean'):
fval = data[col].mean()
elif (self.strategy == 'median'):
fval = data[col].mean()
else:
fval = stats.mode(data[col])[0][0]
return fval
def simple_imputer(self, data, col):
fval = self.fill_values(data=data, col=col)
non_nans = data[col].fillna(fval).to_list()
return non_nans
def label_imputer(self, data, col, label):
col_label_df = data[[col, label]]
counts_df = col_label_df[label].value_counts().to_frame()
classes = counts_df.index.to_list()
fval_class = []
for each_class in classes:
mini_frame = col_label_df[col_label_df[label] == each_class]
non_nans_frame = pd.Series(data=self.simple_imputer(data=mini_frame, col=col), index=mini_frame.index)
fval_class.append(non_nans_frame)
final_vals = pd.concat(fval_class).sort_index().to_list()
return final_vals
```

### Conclusion

Throughout this article, we saw different techniques to handle the missing data. But, this was implemented on a toy dataset, not on a real dataset.

Practicing the above on real data may or may not be suitable. And moreover, it is quite impossible to have a

**categorical**feature to separate the data in clusters and fill the values based on the clusters themselves.It might be beneficial to practice the third technique which predicts the missing values by a mathematical model and this is an unbiased technique that entirely depends on the

**training data**and a**model**itself.It is all up to the practitioner to choose any method and come up with a solution for the given problem.

**Buy Me Coffee**

If you have liked my article you can buy some coffee and support me here. That would motivate me to write and learn more about what I know.

Well, that's all for now. This article is included in the series **Exploratory Data Analysis**, where I share tips and tutorials helpful to get started. We will learn step-by-step how to explore and analyze the data. As a pre-condition, knowing the fundamentals of programming would be helpful. The link to this series can be found here.